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Results of a numerical study of turbulent flow of a polydispersed two-phase mixture in a turning section of a gas duct 
are presented. Calculated data allow a localization of the zone of particle accumulation at the channel walls and an 
evaluation of efficiency of the particle entrapment in a hopper. 

An up-to-date level of the development of hydrodynamics, mechanics of turbulent flows, and computing machinery offers 

hope for obtaining a concrete result in solving, by numerical modeling, the engineering problems involving a design of new 

devices in power engineering and chemical technology, as well as an improvement of their operational conditions. Numerical 

modeling acquires particular significance in studying flows whose reproduction in the laboratory is difficult or entirely impossi- 

ble. A case in point may be aerodynamic processes occurring in boiler plants, the results of whose investigation using physical 

models are far from being always applicable to full-scale objects because of the so-called "scale effect." Numerical models are 

devoid of this shortcoming. However, they are tested and supported by the results of experimental studies, mostly performed 

under laboratory conditions. From this standpoint, the flows in laboratory setups, just as in the full-scale aerodynamic process, 

appear highly important. 

The current work is concerned with modeling a polydispersed flow in a turning channel of the physical model of a boiler 

plant gas duct. The ultimate goal of the study is to numerically obtain the aerodynamic pattern of the flow in the turning gas-air 

channel in the initial geometry, to investigate the effect of a turn angle of the gas duct outlet branch on the efficiency of particle 

entrapment in the hopper, and to localize the zones of increased particle content in near-wall regions of the gas duct. 

A mathematical model of the considered process is based on the chief postulates of the theory of interacting interpene- 

trating continua [1]. Polydispersity is taken into account through isolating main fractions by the function, which defines a 

granulometric composition of the dispersed phase. It is assumed that the particles of each phase are of spherical shape and of 

the same size; the density of the particle material greatly exceeds the density of the carrying medium, the volume concentration 

of the particles is small, and their collisions may be disregarded. 

Equations defining a plane steady turbulent flow of the two-phase polyfractional medium have the form: 
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Dynamic and thermal interactions between the phases are determined by the following relations: 
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where Pl  a n d  21 are the viscosity and thermal conductivity coefficients of the carrying medium, and C i (i = 1, ..., m) is the 

specific heat of unit mass of the gas or particle fraction. 

Presently, the transport  models which take into consideration differential equations for averaged turbulence characteris- 

tics are widely used in modeling the processes of turbulent transfer. The application of such models is indispensable i n the cases 

when the flow is associated with separation, chemical transformations, and with the effect of a heterogeneous phase on the 

averaged flow and turbulent transfer processes. Such models are essentially semiempirical, however, they are appreciably more 

potent for taking account of the influence of physical mechanisms complicating the flow. 

The current study predicts a turbulent structure of the flow from the two-equation k - e  turbulence model, modified in 

[2] to allow for the effect of the dispersed phase on averaged turbulence characteristics: 
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Here (3 = ~ + Ox } 2 \ Ox ) @ 2 Oy ~ is the dissipative function; T L = 5K/(12e) is the local Lagrangian 

time scale; S K and S e are the terms taking into account the particle effect on turbulence [2]: 
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To obtain a turbulent viscosity coefficient for the particle continuum we use the Peskin equation: 

l*t~ 91 1 - -  1,5 i = 2,  m, 
a a - 4  2 ' 

where L is the turbulence scale, ga i = 2~:pifr L is the relaxation parameter, and H is the characteristic geometric scale. 

The turbulence model constants fit the standard values: c I = 1.44, c 2 = 1.92, ct, = 0.09, a K = 1, and er e = 1.3. 
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Fig. 1. Comparison of calculated results with experimental data [7] by velocity 

profiles of  gas (solid curves) and particles (dashed curves), dp = 62/tm, pp = 

1.2 kg/m 3, Re = 24,500; a) D = 0.0254 m, b) 0.0127 m. 
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Fig. 2. Velocity field of the carrying medium. 

A formulation of boundary conditions is an extremely important step of the numerical modeling. Ellipticity of the 

problem on calculation of a steady flow with circulation zones calls for a statement of  boundary conditions on all sections of the 

circuit confining a flow region. Some of them are solid, and some are free boundaries, through which the liquid flow proceeeds. 

A solution behavior along the considered boundary section may not always be determined by one or another physical consider- 

ations. This gives rise to a need for new assumptions about properties of the derived solution. 

The experience gained by now in computations of complex turbulent flows makes it possible to regard a method of wall 

functions, generally realized within the framework of a high Reynolds number turbulence model, as fairly well-grounded for 

formulating boundary conditions at the wall. According to this method, the conditions, obtained assuming that a logarithmic 

velocity and temperature profile is valid in the near-wall region [3], are imposed at the solid surfaces for the carrying medium. 

These assumptions seem quite justifiable for weakly dust-laden flows. An outlet boundary is located at a considerable distance 

from the zones of disturbed motion, which admits the use of mild boundary conditions for all motion characteristics: 

OV~ __ OUi Op~ _ OT~ OK Oe --0, i ~ 1, m. 
Oy Oy Oy Oy Oy Oy 

In studying the flows of heterogeneous media, the problem of formulating boundary conditions for the particle continuum 

acquires an independent meaning, the greatest complications being related to reproducing the conditions, which simulate the 

particle interaction with the walls. If the particles come closer to the wall at a finite velocity and elastic forces are significant, 

then in a certain vicinity of the wall the particle velocity (since both incident and reflected particles are present) is indetermi- 

nate. However, there are approaches which allow one to resolve this uncertainty, for example, the method [4] suggesting the 

introduction of a reflected particle fraction. For rather small particles it can be assumed that their velocity when approaching the 

wall is totally suppressed in a narrow layer of a retarded liquid. 

In the present calculations, at the solid boundaries we take 

U i = V i = 0 ,  i = - 2 ,  m. 
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Fig. 3. Averaged velocity field of particles. 

An exception is the hopper inclines, where for modeling the particle extraction from the hopper the wall is assumed penetrable 

for particles, i.e., just as at the outlet boundary, we have: 

OU----L-~ - -  OV-------L~ - -  0 ,  i ~ 2 ,  m ,  

where n is the coordinate reckoned normally to the surface. 

The examined problem was solved numerically on nonuniform staggered grids. The sought values of gas and paticle 

velocities were determined at the edges of calculating meshes, whereas the values of some parameters were obtained in mesh 

centers. Discretization of the initial differential equations was carried out by a control volume method [5]. To diminish the effect 

of numerical diffusion on the final result, oblique differences [6] were employed in approximately the convective terms, which 

take into account a direction of the flow through the mesh edge. A system of algebraic equations, obtained through approximat- 

ing the initial differential equations, was solved using the Gauss-Seidel  iteration method (for pi , i = 2, ..., m and Ui, Vi, i = 1, ..., 

m) and the two-dimensional factorization for the remaining parameters. The SIMPLE algorithm was applied to determine 

pressure [5]. Convergence of the computational processes was checked by a maximal discrepancy identified for each of the 

transfer equations, as well as by a flow rate for the carrying and heterogeneous phases and by a pressure correction. 

The described mathematical model and computational algorithm were tested for the problem on flow of a monodis- 

persed gas-dus t  mixture in a tube. Figure 1 gives the results of comparing calculated data with those experimental [7]; pertaining 

to the stabilized flow region. As is clear from the figure, there is a good agreement as to the velocity distributions of the carrying 

medium and as to the curves of the averaged particle velocities. Furthermore, consideration is given to heat exchange of a 

uniphase liquid in the tube with a sudden expansion. A satisfactory agreement between the calculated Nusselt numbers behind 

the stagger and the experimental data [8] is obtained. 

Below, some calculated results are presented for the flow of a semidispersed mixture in the turning channel of the gas 

duct. The gas duct configuration given in Figs. 2-4 corresponds to a real configuration. A triangular stagger at the gas duct 

bottom is formed by the inclines, along which the particles move to the storing hopper. In computations we isolate three 

fractions of particles of sizes 50, 100, and 200/~m, with their fractional content comprising 15, 30, and 50%. A mass content of 

the solid phase in the incoming flow is pp = 10 . 2  kg/m 3. A width of the inlet section equals 0.27 m. A gas and particle velocity 

at this section inlet is U i = 12 m/sec (i = 1,..., 4). The motion of the heterogeneous mixture is effected in the conditions 
approaching isothermal. 

Figure 2 shows a vector field characterizing the motion of the carrying medium. Evidently, a fairly extended zone of the 

circulation motion develops behind the flow turning region. In the vicinity of this zone, that is, in the flow core, the gas velocity 

reaches maximal values. Farther downstream the flow straightens and becomes nearly uniform in the outlet section. Figure 3 

gives a vector field of the averaged particle velocities (Wp= ~. :piWi/p~0). At the inlet and outlet sections of the gas duct a 
i ~ 2  

coincidence of the gas and particle velocity fields is observed, whereas in the turning zone the mixture motion is of 

nonequilibrium character. This manifests itself in varying sizes of the circulation region of the particle motion and in an 

increasing angle, which defines the particle onfiow to the lower part of the turning section surface. This zone is the most 

susceptible to erosion wear. Predictions indicate a noticeable particle accumulation at the lower surface of the gas duct, immedi- 

ately behind the turning section (Ppmax = 0.14 kg/m3). The latter is due to a significant sluggishness of  the relatively large parti- 
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Fig. 4. Isolines of turbulent fluctuation energy. 

TABLE 1. Efficiency of the Particle Entrapment in the Hopper 

dp ,' ~2m 

5o 
100 
200 

Total 

Qinlet, g/ 
sec 

4,9 
9,3 

16,8 

31 

4,9 
4,9 
3,8 

13,6 

Qinlet, g/sec 
2 

4,0 
5,2 
6,7 

15,9 

4,9 
4,9 
3,7 

13,5 

cles (dp = 100, 200/~m), which are cast onto the channel wall on an abrupt change in the motion direction of the carrying 

medium. 
Figure 4 demonstrates isolines for the kinetic energy of turbulence K (m2/sec2). Clearly, in the inlet section, the 

development of a turbulent structure accompanies the growth of boundary layers, therefore the zones of elevated intensity of the 

turbulent fluctuations are localized at the gas duct walls. A marked augmentation of the general background in the intensity 

distribution occurs behind the turning region, which is linked to transition of a certain portion of the kinetic energy of the 

averaged motion to the fluctuation energy, in consequence of an appreciable variation in the pulse entering the turning flow 

section. Moreover, there are two regions of elevated turbulent fluctuation intensity on this background. One of them coincides 

with the circulation motion zone (a large vortex immediately behind the turning section), and the other conforms to the flow 

turning in entering the last rectilinear section of the gas duct. 

Apart from those presented above, calculations were performed for flows in gas ducts of the given configuration with 

various inclination angles of the outlet branch to the horizontal. In all cases the outlet section has a horizontal orientation. A 

considerable effect of this parameter on velocity fields is revealed, and a particle distribution in the flow and over the channel 

walls is identified. Using the available calculated results, sizes of the zones subjected to intense erosion wear can readily be 

evaluated. As computations show, with decreasing inclination angle/3 of the outlet branch the separation zone behind the flow 

turning region elongates, and at/3 = 0 ~ it stretches actually to the outlet section. The particle accumulation region, forming at 

the lower wall of the gas duct, also enlarges with decreasing inclination angle. However, at small inclination angles [3 the particle 

concentration in these regions is appreciably lower. It should be pointed out that in all the examined cases (t3 = 0, 15, and 45 ~ 

an indistinct zone of the dispersed phase accumulation was registered at the upper wall of the outlet section. As for the turbu- 

lent structure, a great flow turbulence in the outlet branch of the gas duct was observed in the cases of a large alteration in the 

total flow pulse (high values of/3). 
Efficiency of the particle entrapment in the hopper can be estimated from Table 1. Here Q is the mass flow rate of the 

particles through the cross section of the gas duct. The values/3 = 15, 0, and 45 ~ pertain to variants 1, 2, and 3. As is seen from 

the table, the entrapment efficiency for the considered variants is within 50-60%. The angle alteration differently affects the 

entrapment of particles of various fractions. By the integral exponent, characterizing the particle entrapment for all fractions, the 

first and third variants are the most favorable. 
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The presented computations indicate that for the gas ducts where flows can be approximated as two-dimensional, the 

proposed mathematical model allows a determination, along with a local aerodynamic flow structure, of integral process 

characteristics important for engineering calculations. To the latter one should primarily refer efficiency of the particle entrap- 

ment and pressure losses on the examined section of the gas duct. Besides, based on analyzing the velocity and concentration 

fields it is not difficult to locate the zones subjected to erosion wear. 

NOTATION 

x, y, Cartesian coordinates; U, V, components of the velocity vector; a,  p, P, T, volume fraction, density, pressure, and 

temperature; Ix, Fy, components of the force of interphase interaction; ktt, an, turbulent viscosity coefficient and turbulent 

Prandtl number; R, gas constant; g, acceleration due to gravity; K, kinetic energy of turbulence; e, dissipation of turbulence 

energy; 6ij , Kxonecker symbols; D, tube diameter; p i  0 = pi/ai, true density;/~1, 21, viscosity and thermal conductivity coefficients 

of the carrying medium; dpi , d i m e n s i o n  of the i-th particle f r a c t i o n ;  pp0, true density of the particles;/3, inclination angle of the 

outlet branch of the gas duct to the horizontal. Subscripts: i = 1, parameters of the carrying medium; i = 2, 3,... ,  m fractions of 

the dispersed medium; m - 1, number of fractions. 
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